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ABSTRACT
There are various viscometric flow models available at present
to determine the mechanical properties of incompressible non-Newtonian
fluids. In most of these measurements of the normal stresses is quite
a challenge. We introduce a new viscometric flow model and derive a
theory for the measurement of the "second normal stress.'" We also in-

dicate how such a measurement can be performed in practice.
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1. Introduction

At present there are various viscometric flow models (this terminolo-
gy is due to Coleman [2]) available for incompreséible now Newtonian fluids.
This class of flows describes mechanical behavior of an incompressible fluid
completely by fhree material functions n, Ol and 02 which depend on the
rate of shear K. 1In the 1iterature n is known as the viscosity function
and o5 and 0, are known as the first and second normal stresses of the
fluid. Couette flow and Poiseuille flow are well known examples of such
flows. The fluid, in fact, can be Newtonian or non-Newtonian. In the case
of Newtonian fluids, as we shall see later, the normal stresses oy and 9,
are zero. Viscometric flows are of great interest to rheologists.

The purpose of this note is to present a new viscometric flow model
which has not been studied for non-Newtonian fluids. Also we introduce
a theory for the calculation of the second normal stress 0, and present
a scheme for measuring 02 in practice.

We shall begin by stating the fluid flow model. The flow is generated
by dripping fluid on the top center of a vertical cylindrical block of

radius R and of height h at a slow steady rate forming a thin layer on

the walls (see Fig. 1).
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Thin film(thickness -9)

Figure 1



We assume that the thickness of the layer § 1is constant throughout the
motion. Discussion with a group of Polymer scientists indicates a difficulty
with this assumption; that is, the thickness of the layer would be larger

or smaller at the ends of the cylinder depending on the "thickening" or
"thinning” property of the fluid. We shall overcome the difficulty by
making the assumption that h >> R so that the flow will have straight
stream lines over a large area of the wall of the cylinder. We now discuss

the equations governing this motion.

2. Equations of motion

Notation: let u denote the velocity of the fluid, Te denote the

extra stress and p denote the pressure field.

Then the momentum equation is
pﬁ=-Vp+divTe+V(gz) . M)
and the incompressibility condition yields
div u = 0. (1)

In equation (M) g 1is the acceleration due to gravity and gz provides
the potential of the body force at a distance 2z measured from thé top
of the cyclinder. We assign a polar coordinate system from the top of the
cyliner with the =z axis pointing downwards. (See Fig. 2.)

In what follows we make the usual assumptions to simplify our mathe~
matical model. These assumptions are more physical and rather straight

forward. First we assume that the fluid velocity is in the 2z direction:



This yields

Furthermore, we assume symmetry in the O-direction so that

the form

2
u = uz(r)lz.

u will have



For the steady flow problem, the assumption that streamlines are straight
and parallel to the z-direction means that pu in equation (M) is zero;

hence equation (M) reduces to

0=-Vp + divlTe + V(gz). ™"

It is well known (Coleman and Noll [1]) that for steady viscometric

flows the extra stress tensor Te has the form

rr Trz 0
Te = Tzr Tzz 0 ’ | (1)
L 0 0 Tee
where
T._=T_ _=1(K), (2)

rz zY

is known as the shear stress and K 1is the shear rate defined by

duZ
= —=, 3
K== (3)
Trr’ Tzz and Tee are defined by
Ter = Tpz = 91K
(4)
T _~T,, =

rr ™ Top = 9.



The quantities Ul(K) and GZ(K) are known as the first and second
normal stress of the fluid. This convention of representing 0y and g,
as the differences of normal stress components is similar té the one used
in [4]. Various other authors use different conventions. For example

Coleman and Noll [1] use the convention

|
3

|
=

t
H

OZ(K) T e 22

The shear dependent viscosity n = n(K) is identified with T(K) in the

rheological literature as
T(K) = Kn(K).
For imcompressible Newtonian fluids
T(K) = Kno, Ng = constant > 0,
and for ideal or perfect fluids

T (K) E.O K) Z ¢

1(

OZ(K) (see [3]). The function T(K)

For Reiner-Rivlin fluids Ol(K)
is usually measured by a simple plane shearflow. Thus there are constitutive
models for T(K) for different fluids available in the literature. Also

there are various constitutive models for cl(K) in the polymer science




literature. However, there are few models for OZ(K) because of experi-
mental difficulties. This note presents a scheme for the measurement of

o] Also the model can be used as a visometer, that is, it can be used to

2
measure the viscosity of Newtonian fluids. We shall discuss this in the

next section under the calculation of the flow rate.

We observe from (3) that K is a function of r only and hence so

is Te. Under these conditions (M') can be written as

-ll:aqu(rTrz) = g_IZZ - 8- )
Equations (5) - (7) determine p in the form
p=az + £f(xr), (8)

where a, a constant, and f a function of r only, are to be determined.
The constant a in (8) is determined from the continuity of pressure

across the free boundary at r =R + §,

p=az + f(R+9) = Py >

it
(@]

for all values of =z, where Py is the atmospheric pressure. Hence a

and p = £(r). In turn equation (7) gives us



or

where C 1is a constant and we determine C by the fact that on the
free boundary r =R + 8, T(K(r+d)) - the shear stress - is zero. This

gives

, (9)

o
”Iouu

T(K) = - % r-
where

r. =R+ 6.

For most fluids the constitutive relation for T can be obtained as

a function of XK. Thus equation (9) can be inverted in terms of K. That is,

2
r
= 1l_28 .80
K(r) =71 ) + 5T |° (10)
duz(r)
But Fraaa K(r). Also using the fact that uz(R) = 0, we have
T r2
a (o) = [t -8+ 8 %4 . (11)
z 2 2 g2

Thus the velocity profile is determined. It can be shown (see [1]) that
the normal stresses Trr and T69 can be obtained in terms of first and

second normal stresses as follows:



=]
il

(12)

Tgg = (1/3) [ol(K) + oz(K) ]

These relations will be used in solviné for f(r) in order to find the
pressure field from equation (1). In principle, if we know the constitutive
equations for 01 and o, as functions of K we could solve equation

(5). Unfortunately, although several models for 01 exist Oy is rarely

known. In section 4 we give a procedure for the determination of 0,-

3. Flow Rate

It is customary in viscometric flows to calculate the flow rate at
the exit of the flow model. This calculation is used to obtain T in
terms of the flow rate. However, measurements done in this way are sub-
ject to errors due to the swelling effects of non-Newtonian fluids; for
further details see [3]. The model can be used to measure the viscosity
of any Newtonian fluids as we now describe.

Let Q be the volume discharge of the fluid at the end of the cylin-
der per unit time. Then

r

0
Q = 2wf u_(r)rdr, (13)
R
duz(r)
using the boundary condition uz(R) = 0 and the shear rate e K(r)

in the above expression and integrating by parts we have

%o

Q= “uz(ro)ré —'Tjr K(r)rzdr.
R



Using equation (10) we have
o - L
- 2 _ -l|_gr g 0.2
Q—1Tuz(r0)r0 TT/T 2+2r r dr.
R

Thus if Q and the velocity on the boundary are known, in principle
T can be inverted and obtained i& terms of Q and uz(ro). As in
the case of other models unless the magnitude of swelling is known we

can not use this calculation to measure T. But for Newtonian fluids,

we note that

du

T(K) = ngK = g Frﬁ .

From equation (9) we have

2
du r
z___8|,_0
dr 2n0 [ r ]'

Integration of the last equation using the boundary condition uz(R) =0

yields

u (r) = - Zﬁg [%—‘(rz—Rz)-rg 1og(§):|.

Substituting this value of u, in equation (13) we have,

Y

0
T 3 2 2
Q= - g [%(r -R7r) - ryr 1og(§)]dr,
or
mg |, 4 %o 2 2,2 2
n0=-8— 4]:‘0 log‘—ﬁ— —(31’0—R)(r0‘R) s

which gives the viscosity.



-10-

4, Theory for the Calculation of Second Normal Stress.

For convenience we rewrite equation (1) with p = f(r):

d 1
dr Trr + ;'(Trr-Tee) = £' (). (24)

| .

We observe that again

T (¥) - Tgg(r) = 0,(K(r)).

Fluid

Figure 3

We integrate equation (14) over [R+ §,R] and let the atmospheric

pressure be zero for convenience. The result is

R ar R &)
rr 2 _
/ ar dr + / ~——TE——— d§ = f(R).

R+ 6 R+ ¢

Since the normal stress is zero on the free boundary r = R + §, we have

Trr(Ri-G) = 0. Thus the last equation simplifies to
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R+ 6§
0, (K(E)dE
Trr(R) - f(R) = —E—— .
R

The quantity Trr(R) is the normali stress on the boundary in the radial
direction and f(R) is the pressure. This difference could be directly

measured by a pitot tube as shown in Figure 4.

- o o ge—

- e a inem daem do b ,_n

)

PP p—

1
1
I
1
Measurement of X(R) 7 : i
initial position i |
] |
[ [
] 1
3 i
A {g
L )

Figure 4.



-12-

Let

X(®) = T_(R) - £(R). (15)

Thus \

R+ S

0, (K(E))dE
X (R) =f S (16)
R

We will obtain an expression for 02 from equation (16). First we

consider the expression (9) for T(K). This can be rewritten as

which yields

r = - (17)

We observe that only the '+' sign is permissible. Also from equation

(9) we have

_rz -
- _810
dt 5 2 +1| dr ,
i n
or r-rz -
-_81|20 dr
2|2 tr) o

We use equation (17) to substitute for r in the brackets. The result is

dr gr(z)(‘r +v T+ (gro)z) (T-V 2+ (gro)z)

r 2r2
& o

t = - £
2 g
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or

_ S22 dr
dt = ~ 1'+(gro) -

Hence using this expression in equation (16) we have
3

P o,®

/e (gr )2

0

x(R) dr ,

i

or

0, (K)

o VT4 (gr)?

0

x(R) drt , (18)

where T is the shear stress on the wall:

T = T(K(R)).

Differentiating ¥ in (18) with respect to T, we have

0, (K)
: 2
S Ral——— (19)
T/
124-(gr0)2
where K is the rate of shear on the wall. In principle ﬁé can be

measured from experiments or can be calculated since ¥y and T are

known. This analysis provides a means for measuring the second normal stress.
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